Applications of elliptic curves in cryptography and computational number theory

نویسنده

  • Kamal Khuri-Makdisi
چکیده

Then two people, traditionally called Alice and Bob, can communicate in privacy even if their messages are being intercepted (e.g., over the internet!). To send a message m ∈ MP , Alice sends m′ = E(m) ∈ MC, and Bob decodes m′ by applying D to it. This assumes that Alice and Bob have decided on D and E, which they usually keep private between themselves. The cryptographer (Cathy) only sees the message m′, but in principle does not know how to apply D. A reasonable model is to assume that Alice and Bob have sent many messages m, encoded and decoded using E, D, and that Cathy has seen all the corresponding coded forms m′. In addition, Cathy may have found out by other

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve

In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind  digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...

متن کامل

Research Statement : Steven

Research and Applied Interests: Distribution of zeros and n-level statistics for families of L-functions, especially families of elliptic curves with rank over Q(T ), Random Matrix Theory, Random Graphs, Elliptic Curves, Additive, Analytic, Combinatorial and Computational Number Theory, Probability Theory and Statistics, Benford’s Law, Cryptography, Sabermetrics, Linear Programming and Operatio...

متن کامل

Computing Modular Polynomials

The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with an isogeny of degree ` between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms (...

متن کامل

Applications of an Isomorphism of Binary Elliptic Curves

In this paper, we discuss an isomorphism between elliptic curves defined over binary fields (curves defined over F2n). We introduce a simple public-key encryption scheme for binary elliptic curves. Here we demonstrate that this encryption scheme is as secure as the EC El Gamal cryptosystem. The basis of the encryption scheme is this isomorphism between binary elliptic curves. We use this same i...

متن کامل

Computing Modular Polynomials

The l modular polynomial, φl(x, y), parameterizes pairs of elliptic curves with an isogeny of degree l between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms ([B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016